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Numerical aspects of two coupled harmonic
oscillators

Jihad Asad and Olivia Florea

Abstract

In this study an interesting symmetric linear system is considered.
As a first step we obtain the Lagrangian of the system. Secondly, we
derive the classical Euler- Lagrange equations of the system. Finally,
numerical and analytic solution for these equations have been presented
for some chosen initial conditions.

1 Introduction

As it is known to scientists there are two main approaches that can be used to
investigate dynamical systems and obtaining the equations of motion of any
system. The Newtonian approach, which is a force (i.e., vector) based one, and
an energy approach method (i.e., scalar) invented by the French mathemati-
cian Joseph Louis Lagrange. In many cases, we face difficulties in applying
the Newtonian approach, since we have to set up all forces acting on the sys-
tem and sometimes it is not clear. The second approach (i.e, Lagrangian) is
a very elegant and useful method for finding the equations of motion for all
dynamical systems [1]-[3].

One can see from literature that Lagrangian and Hamiltonian mechanics
origin rested on two principles. First they try to express the state of the
mechanical system using the minimum representation possible. Second, a
mechanical system tries to optimize its action from one split second to the
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next, and as a result the only physical principles the reader has to know are
Newtons three laws, the kinetic energy, and the potential energy of the system.

Many important physical systems can be found in many literature review
works [1]-[6]. Among these systems we can notice coupled oscillators. Coupled
oscillators are oscillators connected in such a way that energy can be trans-
ferred between them [1]-[3]. The motion of coupled oscillators can be complex,
and does not have to be periodic.

The stability of two dynamical systems using Lyapunov function was stud-
ied by Bala in [7]. The structural influence of the forces of the stability of
dynamical systems using Hurwitz criterion and also Lyapunov function was
studied in [8]. The motion equations of a one-dimensional finite element hav-
ing a general three-dimensional motion together the body using the Lagranges
equations are established in [9]. Similar techniques in order to obtain some
theoretical and experimental results can be encountered in papers [15], [16],
[17].

Simulink is an environment of Matlab Software that is used for the simu-
lation of dynamical systems and also for the model-based design of embedded
systems. With Simulink the considered systems can be designed, simulated
and implemented based on a set of block libraries. Different types of con-
tinuous, discrete and mixed-signal systems (e.g. communications, controls,
signal/video/image processing) are simulated and tested with Simulink, [10]-
[14]. When the mathematical models contain differential or algebraic equations
then the behavior of the systems could be explained from the point of view
of scientific principles based on the parameters or variables that influence the
models over time. In the third part of the present paper the simulation of
the considered dynamic system is realized using numerical techniques on the
solution of a system of differential equation.

This paper deals with a two coupled harmonic oscillators known in liter-
ature as a symmetric linear triatomic molecule. The contribution of authors
consists in the analysis of the behavior of the system from a mathematical
and also a numerical point of view. The solution of the considered system
is obtained analytic using the Laplace transform and the numerical analysis
is considered for two modes of oscillations: symmetric and asymmetric using
Simulink environment from MATLAB software.

The paper is organized as follows: In sec. 2 a description for the system is
presented, where a Lagrange equation is obtained, and as a result the Euler-
Lagrange equations are derived. The mathematical solution is given in the
section 3 of the present paper using the Laplace transform. In sec. 4 numerical
techniques used are discussed and two cases were considered (anti-symmetric
and mixed symmetric). Finally, we close the paper by results and discussion
section (sec. 5).
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2 Description of System

In this work we are going to investigate a two coupled oscillators. To start, we
consider a two coupled harmonic oscillators of three masses connected linearly
by two springs each of stiffness (k ). The masses at the ends are identical (m),
while the mass at the center is differ (M) as indicated in Fig. 1 below. This
system is known in literature as a symmetric linear triatomic molecule (e.g,
CO2).

The kinetic energy ( T ), and potential energy ( V ) of the system respec-
tively are:
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Figure 1: A two coupled harmonic oscillators

As a result the classical Lagrangian reads:

L = T − V ;
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2
3 −

1

2
k (x3 − x1)

2 − 1

2
k (x2 − x3)

2
(3)

Now, in order to obtain the classical Euler- Lagrange Equations (CELE’s)
we use the relation ∂L

∂xi
− d

dt
∂L
∂ẋi

= 0 . With i = 1, 2, 3

So for x1, x2, and x3 we have

ẍ1 = Ω2 (x3 − x1) (4)
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ẍ2 = Ω2 (x3 − x2) (5)

rẍ3 = Ω2 (x1 + x2 − 2x3) (6)

where r = M
m , and Ω =

√
k
m

It is clear from Eq. (3) that we have 3 degrees of freedom. We can reduce
this to 2 degrees of freedom by considering only oscillatory modes of motion
(i.e., neglecting translational modes), this can be achieved by demanding that
the center of mass of the system remains stationary. Thus, we require that:

m(x1 + x2) +Mx3 = 0 (7)

The above equation can be rearranged to give:

x3 = −m

M
(x1 + x2) (8)

On the other hand

ẍ3 = −m

M
(ẍ1 + ẍ2) (9)

Now, eliminating x3 from Eqs. (4- 6) we yield respectively:

rẍ1 = −Ω2 ((1 + r)x1 + x2) (10)

rẍ2 = −Ω2 ((1 + r)x2 + x1) (11)

ẍ1 + ẍ2 =

(
1 +

2

r

)
Ω2x1 +

(
1 +

2

r

)
Ω2x2 (12)

Note here that Eq. (12) is just the sum of Eq. (10) and Eq. (11)
Now, in the next section we aim to solve Eqs. (10, 11) numerically for

some initial conditions.

3 Mathematical solution

In this section we will solve analytic the system formed by Eq. (10) and (11)
using the Laplace transform. Therefore the mentioned system can be written
in the simplified form: {

ẍ1 = ax1 + bx2

ẍ2 = bx1 + ax2
(13)

where a = −Ω2(1+r)
r and b = −Ω2

r .
In a general case we will consider the following initial conditions:

x1(0) = α0; ẋ1(0) = α1;

x2(0) = α2; ẋ2(0) = α3; (14)
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Using the property of original derivation and noted by L the Laplace transform
we have:

L[x1(t)](s) = X1(s); L[x2(t)](s) = X2(s);

L[ẍ1(t)](s) = s2X1(s) − sα0 − α1; (15)

L[ẍ2(t)](s) = s2X2(s) − sα2 − α3;

Thus the system (13) will have the following form:{
(s2 − a)X1(s) − bX2(s) = sα0 + α1

−bX1(s) + (s2 − a)X2(s) = sα2 + α3
(16)

Solving the above system we will obtain the images through the Laplace trans-
form:

X1(s) =
s3α0 + s2α1 + s(bα2 − aα0) + bα3 − aα1

[s2 + ξ2][s2 + ζ2]
(17)

respectively,

X2(s) =
s3α2 + s2α3 + s(bα0 − aα2) + bα1 − aα3

[s2 + ξ2][s2 + ζ2]
(18)

where ξ2 = −a− b = Ω2

r (2 + r); ζ2 = −a+ b = Ω2. Using the inverse method
of Mellin Fourier for Laplace transform we will deduce the originals:

x1(t) = A1 cos(ζt) +
B1

ζ
sin(ζt) + C1 cos(ξt) +

D1

ξ
sin(ξt) (19)

where A1 = α0−α2

2 ; B1 = α1−α3

2 ; C1 = α2+α0

2 ; D1 = α1+α3

2 , respectively

x2(t) = A2 cos(ζt) +
B2

ζ
sin(ζt) + C2 cos(ξt) +

D2

ξ
sin(ξt) (20)

where A2 = α2−α0

2 ; B2 = α3−α1

2 ; C1 = α2+α0

2 ; D1 = α1+α3

2 .
We observe that A1 = −A2, B1 = −B2, C1 = C2, D1 = D2.

4 Numerical solution

The system presented in our work has two modes of oscillations. The first
mode of oscillation occurred when x1(0) = −x2(0), and x3(0) = 0 . This
mode of oscillation is known in literature as symmetric (breathing) mode. In
this mode of oscillation, the two end atoms move in opposite direction whilst
the central atom remains stationary.
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The second mode in our system is the asymmetric mode in which x1(0) =
x2(0), and x3(0) = −2

r x1(0) = −2
r x2(0). In this mode of oscillation the two

end atoms move in the same direction whilst the central atom moves in the
opposite direction.

Below, we aim to study the above two modes numerically for two cases of
coupled oscillators. In the first case (i.e., case I) we consider r = M

m = 1.50,

with the following values of angular frequencies Ω =
√

k
m = 0.50, 1.00, and

1.50, while for the second case(i.e., case II) with the following values of angular

frequencies Ω =
√

k
m = 0.50, 1.00, and 1.50.

Therefore, our system of differential equations will have the following form x′′1 = ax1 + bx2

x′′2 = bx1 + ax2

x′′3 = c (x1 + x2)
(21)

where a = −Ω2(1+r)
r , b = −Ω2

r , c = Ω2(2+r)
r .

The numerical analysis is realized using the Simulink environment from
Matlab. The Simulink scheme of the system (13) is:

Figure 2: The Simulink scheme for the system (13) using the Fcn block from
the block library User Defined Functions

4.1 The symmetric mode

For this mode of oscillation let us assume that x1(0) = −x2(0) = 1 , and
x3(0) = 0 , while ẋ1(0) = ẋ2(0) = ẋ3(0) = 0.



NUMERICAL ASPECTS OF TWO COUPLED HARMONIC OSCILLATORS 11

Figure 3: The behavior of the solutions of the system (13) in the case when

r=1.5 and Ω =
√

k
m = 0.50

Figure 4: The behavior of the solutions of the system (13) in the case when
r=1.5 and Ω = 1.0
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Figure 5: The behavior of the solutions of the system (13) in the case when
r=1.5 and Ω = 1.5

4.2 The asymmetric mode

For this mode x1(0) = x2(0) = 1 , and x3(0) = −2
r x1(0) = −2

r x2(0) = −2
r .

While ẋ1(0) = ẋ2(0) = ẋ3(0) = 0 .

Figure 6: The behavior of the solutions of the system (13) in the case when

r=1.5 and Ω =
√

k
m = 0.50

Figure 7: The behavior of the solutions of the system (13) in the case when
r=1.5 and Ω = 1.00
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Figure 8: The behavior of the solutions of the system (13) in the case when
r=1.5 and Ω = 1.5

5 Results and Discussion

In this study, we investigated numerically the behaviour of a famous physical
system called a linear two coupled oscillators. This intresting system is a
symmetric linear system, with carbon dioxide CO2 being a good example.
Firstly, the symmetric mode, where the behaviour of the system has been
presented in Figs. 3- 5. Secondly, the asymmetric, where the behaviour of the
system has been showed in Figs. 6- 8.

The numerical analysis of the system (13) is realized using the Simulink
environment, part of MATLAB software. Due to the fact that the differential
equations from (13) are of second degree we used two integrator blocks that
are continuous-time integration of the input signal with initial conditions of
internal type in order to obtain the behaviour of the solutions. To simplify the
Simulink scheme, the expressions of those three equations are inserted in three
different function blocks. The scheme is realized based on the loop diagrams,
therefore in front of the function blocks we included a bus creator that creates
a bus signal from its inputs.

Figures 3- 5 show the behaviour of the solutions of the system represented
by Eq. (13) for different values of Ω . It is clear from these figures that
the particle at the center remains at rest as we assumed previously, while the
position of mass 1 behaves in the opposite direction to that of particle 2. This
is why we call this mode symmetric. Also the resulting motion of masses 1,
and 2 is oscillatory motion but with 180o out of phase with each other.

In figs. 6- 8, the behaviour of the solutions of the system represented by
Eq. (13) for different values of Ω has been showed. For this asymmetric mode
it is clear from Figs. 6- 8 that the behaviour of the solution of the system
(13) depends on the value of Ω . For example, Fig. 8 shows that we have
oscillatory motion for the three masses but as cleare mass 3 with 180o out of
phase with the other two masses.
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